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Today’s multi-core, multi-bus SoCs lack the necessary 
externally visible observation points needed for real-time 
system debug and performance optimization. 
Developers need access to a vast amount of data from 
deep within the chip while the chip is operating in its 
system environment. And, for effective debugging, that 
trace data needs to be filtered down to a manageable 
quantity of relevant data. 
 
In this paper, we show how Infineon’s Multi-Core Debug 
Solution makes real-time, in-system debug and 
performance analysis practical by tracing the relevant 
information at the relevant time(s). 
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ABSTRACT 
The speed and density of today’s multi-core SoCs have outgrown traditional 
debugging methodologies. To debug a system in its target environment, 
where problems often only occur, a debugger needs access to an enormous 
amount of trace data from various processors, buses, and signals within the 
SoC. Getting this data off-chip to the debugger in real time requires on the 
order of 100 Gbits/sec of bandwidth at the chip I/O, which is not practical 
using either dedicated debug pins or shared debug/functional pins. The 
problem is further compounded by the need to analyze all of that data. 

Infineon has successfully developed and deployed a technology known as 
the Multi-Core Debug Solution (MCDS) to address that problem. Using 
advanced on-chip trace techniques that include on-chip trigger generation, 
trace data compression, and trace storage, MCDS provides only the relevant 
trace data to the debug tool. Without adding pins to the chip, MCDS enables 
real-time, in-system debug and performance optimization. 
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WHY COMPLEX SOC DEBUGGING NEEDS A SOLUTION 

Introduction 
The migration from system-on-printed circuit board (PCB) to system-on-chip 
(SoC) has moved more and more parts of the system onto the SoC. An 
unintended side effect of this higher level of integration is the loss of 
observation possibilities (Figure 1).  
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Figure 1: Tool Probing Points for System on PCB and SoC 
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When the program memory or a cache is on-chip, it is no longer possible to 
observe the program flow by just tracing the fetched code at the external bus 
interface. On the data access side, the trend is similar.  

The latest generation of SoCs goes one step further with the introduction of 
multi-core architectures. Also, due to active peripherals like DMA or serial 
interfaces with bus master capabilities, such systems are increasingly more 
difficult to design and to debug. This is particularly true for real-time systems 
such as for automotive, where traditional debugging with breakpoints and 
single-stepping is definitely not adequate. 

For example, even if the SoC in Figure 1 contains trigger logic on bus 2 that 
can stop the whole system when there is a wrong data access, this is not 
always sufficient to find the root cause of the problem. The bug could be in 
an interrupt service routine running on the processor core, which has already 
returned when the pipelined write access is propagated over the bus bridge 
from bus 1 to bus 2. In addition, the bug could be sporadic and may only 
occur when the SoC is used in its hard real-time environment. The obvious 
solution for such situations is to have trace support on the SoC. 

Zero Defect Culture 
Not only is the hardware part of a system is getting more and more complex, 
it is the same for the software (Figure 2). Traditional debugging still searches 
and finds a significant number of bugs when all parts of the system work 
together. However, ensuring a completely bug-free design becomes nearly 
impossible as the size and complexity of the system exceeds a certain limit. 
The time needed to analyze a bug, where the effect is visible in a totally 
different place and the link to the root cause is across several component 
boundaries and hierarchy levels, can obsolete any time-to-market planning. 
On the other hand, a bug that slips through testing can lead to a very 
expensive recall of the product. 

 
Figure 2: System Components on Hardware and Software Levels 
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The obvious and proven way out of this complexity trap is to build a system 
the employs well-defined, hierarchically structured components, with 
straightforward interfaces between them. For each single component, the 
verification complexity is manageable, so a bug-free component is not a 
completely unrealistic target. The debugging scope is more local, starting 
hierarchically from bottom to top. A lower-level component is merged into the 
next higher level of hierarchy only when it is fully tested and bug-free 
(Figure 3). 

 
Figure 3: Debugging Levels 

SoC Debug Challenge 
Debugging of complex systems requires parallel tracing of selected system 
states. Ideally, the program flow of all cores, their data accesses, data 
transfers on multi-master buses, special signals, and certain states of 
peripherals would be available for analysis with cycle-accurate alignment. 
The key challenge is the getting the required bandwidth for the trace data. 
For a multi-scalar processor core, the Instruction Pointer (IP) and up to two 
data accesses (address and data) need to be recorded in the same cycle. 
Depending on the processor architecture, this amounts to 100–200 bits per 
clock cycle; so, for a multi-core SoC with fast processor cores, the order of 
magnitude of the required trace bandwidth is 100 Gbit/s. Even with trace 
data compression—which works fine for IP trace (compression factor of 10 to 
20) but is quite limited for data trace (maximum compression factor of 2)—it 
is impossible to get this bandwidth off-chip in a cost-effective way.  
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The increased cost of getting the trace data off-chip can be limited to only a 
test version of chip, but the next hurdle is the external trace capture and 
storage unit. Gigabytes of trace memory are sufficient only for seconds of 
trace; and the trace data still needs to be uploaded to a computer. This will 
take about 20 seconds for one gigabyte over a gigabit Ethernet link, after 
which the debug tool software still needs to analyze and filter the data, which 
can take up to several minutes. 

From Pin-Based Trace to On-Chip Trace 
Figure 4 shows the general trend for required trace bandwidth for leading 
edge SoCs using the latest technology. The required trace bandwidth scales 
with the number of cores and their interconnect busses, multiplied by the 
operating frequency. This trend is balanced with the falling cost of gates and 
memory cells, which are the building block elements of on-chip trace 
solutions. However, it is not balanced with the cost of bandwidth per pin. At 
the physical transport layer level, there is no benefit from newer 
technologies. The silicon size is determined by mechanical constraints 
(bonding) and the required driver strength for a high-frequency signal with a 
given external load capacitance. Also, the packaging cost per pin is falling 
much more slowly than the cost per transistor. 
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Figure 4: Trace Performance Trend 
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One option to gain trace pins is to overlay tracing on to existing pins. 
However, this has two drawbacks: 

• The requirement for such pins is that they are not needed by the 
system during the debugging phase. It is usually difficult, if not 
impossible, to identify such pins. 

• High trace data frequencies require strong output drivers. These drivers 
will cause high leakage currents and bad electromagnetic compatibility 
(EMC) behavior even when they are not being used for tracing, since 
they are also used for application functions during normal operation. 

ON-CHIP TRACE 
The following sections describe the reasons for on-chip trace, the limitations 
of on-chip trace, and how those limitations can be overcome. 

Debugging 
When used for debugging, the trace data will eventually be analyzed by a 
human being. Since nobody can step through millions of cycles of data at a 
computer screen, the debug tool must offer search functions for the trace. 
These search functions provide conditions, of various levels of complexity, to 
search for within the recorded trace.  

The idea of on-chip trace is to apply these conditions to restrict the trace 
recording to this very small fraction of relevant trace data. The search 
condition becomes the trigger condition to stop the trace recording. There 
are even tools on the market that promote the feature that the trigger and 
trace qualification graphical user interface (GUI) is the same GUI used for 
trace search. 

With this approach, the size of the trace memory can be kept so small that it 
is acceptable to have it on-chip. It can be also shared with user RAM, which 
is only used for higher-level applications, if a bottom-up system verification 
and debugging approach is used as previously described. With on-chip trace 
memory, the amount of trace data that needs to be uploaded is quite small, 
so there is no delay and the user can work interactively. 
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Profiling and Performance Optimization 
In addition to debugging, trace is also used for profiling and performance 
optimization. Profiling is the analysis part of performance optimization—
finding the sections of code where the application spends most of the time. 
These sections of code (for example, functions) can then be optimized on a 
higher level, which is sufficient in most cases. However, for certain critical 
algorithms, reducing the execution time of the core loops by just a few cycles 
can have a significant effect. For this optimization, a cycle-accurate trace is 
needed to enable analyzing the effects when this core loop is optimized on 
the assembler level (for example, by reordering the instructions). 

Profiling is a statistical analysis of the system behavior. It is mainly applied 
for the program flow, but other aspects such as data accesses can also be 
profiled. In essence, profiling should answer two questions: 

1. Where is the largest lever for performance optimization? 

2. How can the performance in this part be optimized? 

With statistical sampling, the required data rate can be reduced to a level 
that allows avoiding a high-speed trace interface. The sampling rate just 
needs to be kept low enough that the bandwidth of the tool interface is 
sufficient for continuously reading out the trace data. For individually 
analyzing the performance-relevant functions (for example, with cycle 
accurate trace), the on-chip trace memory is sufficient.  

The reasons for sub-optimal performance can be such things as cache 
misses, pre-fetch buffer misses, and/or bus contention, which are not directly 
visible even from a cycle-accurate IP trace. In some cases, they can be 
guessed; but this is a cumbersome approach. The better option is direct 
recording of such events, aligned with data and IP trace. 

Devices with On-Chip Trace 
Based on these considerations and after intensive discussions with key 
customers, Infineon decided for an on-chip trace solution several years ago. 
Currently, there are two Emulation Devices (EDs) available in the market: 
TC1766ED and TC1796ED, which cover a whole family of high-end 
automotive powertrain microcontrollers. 

Developers of automotive 
applications are using 
MCDS to tune powertrain 
control software—from the 
passenger compartment of 
the car while the engine is 
running. 
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Figure 5 shows the TC1766ED on the unchanged evaluation board of the 
TC1766. The automotive-specific requirement of a large overlay RAM for 
calibration drove the decision to build dedicated EDs. A typical calibration 
use case is to optimize the engine-control parameter tables, residing in flash 
memory, from the passenger compartment. The TC1766ED features 256 KB 
of emulation RAM whose 64-KB tiles can be assigned to flash overlay or 
trace buffering. The TC1766ED is created from the unchanged hard macro of 
the TC1766 SoC, extended on the side with the overlay/trace RAM and the 
trigger, trace qualification, and trace compression module known as MCDS 
(Multi-Core Debug Solution). 

 
Figure 5: TC1766ED Emulation Device with MCDS 

On-Chip Trace Architecture 
In the MCDS-based on-chip trace architecture, the complete emulator from 
trace message generation down to trace storage is located within the device 
package (Figure 6). At the heart of this emulator logic is Infineon’s on-chip 
MCDS, which features trace, triggers, and performance monitoring. The 
architecture is independent of the physical interface between the chip and 
the debug host; no additional hardware is required except for the host PC. 
Instead of an additional emulator box, a software layer running on the host 
computer can be used to configure MCDS and to read the stored trace data.  
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Figure 6: Data Flow through an MCDS-Based Debug System 

Infineon developed and uses such a layer, called DAS (Device Access 
Server, see www.infineon.com/DAS). With this concept, any existing chip 
interface can be shared to get the trace data off the chip; so no additional 
pins are required. A popular solution is to use the standard JTAG pins as 
debug interface. Especially for debugging or calibration measurement in the 
field (for example, engine control in a car while driving), a narrow tool 
interface allowing a long thin cable is much more convenient than the bulky 
cables, headers, or adaptors that are required for pin-based trace 
architectures. 
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MULTI-CORE DEBUG SOLUTION (MCDS) 

Architecture 
Figure 7 shows the functional blocks of MCDS in an example system for two 
debug targets (Cores A and B). Depending on the target type (processor, 
bus, or set of signals), the relevant traced information can be different. For 
instance, the instruction pointer can obviously only be traced for a processor 
target. For other target types, information such as data and status signals 
can be of interest. 

 
Figure 7: MCDS Functional Blocks in Two-Target Example 

Figure 8 shows an example MCDS subsystem with the JTAG option for 
access to MCDS and the emulation memory (EMEM). For a different 
hardware interface (such as USB or CAN), the JTAG specific blocks in 
Figure 8 (JTAG controller, JTAG client, and bus master) have to be replaced 
by the corresponding interface logic. 

The JTAG controller in the system as shown in Figure 8 could be shared with 
other JTAG clients. Appropriate JTAG instructions are required to ensure the 
correct mode of operation. 
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MCDS supports debug targets of different types:  

• Processor 

• Bus 

• Set of signals  

For the different debug target types, different information is available for 
tracing. For example, a bus type of target usually does not provide any 
instruction pointer information. Table 1 lists the different target types and the 
corresponding relevant trace information. 

Table 1: Trace Information from Different Target Types 
Traced Information Processor Bus Set of Signals 

Process ID X   

Instruction pointer (IP) X   

Data X X  

Status X X X 

Performance data X X  

Watchpoint X X  
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Each debug target is connected to MCDS through an Adaptation Logic block. 
The design of such a block is specific to the debug target. The Adaptation 
Logic block connects the target’s custom interface (for example, instruction 
pointer, data, address, etc.) to a generic standardized interface that is used 
by MCDS. In addition, the Adaptation Logic block synchronizes the signals 
from the clock domain at the target side to the MCDS clock domain. Of 
course, this feature only applies if the emulation clock (the MCDS clock) and 
the target clock belong to different clock domains. 

The trace messages that are generated in the MCDS kernel are stored in the 
EMEM. The EMEM contains memory cells (RAM) and the control logic that is 
required to ensure that MCDS (write) and the debug tool (read) can both 
access the trace memory without conflicts.  

The architecture of MCDS depends on the number and type of debug 
targets. Figure 9 shows an overview of the blocks in the MCDS kernel. Each 
target is connected to a dedicated Observation Block (OB), in which trace 
qualification and trace message generation take place. Several Trace Units 
of different types are contained in an Observation Block. The number and 
type of these Trace Units depend on the debug target to which the 
Observation Block is connected. 
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Figure 9: MCDS Kernel Overview 
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Table 2 gives an overview of which type of Trace Unit is usually used for a 
specific kind of trace information. The combination of Table 1 and Table 2 
results in an appropriate set of Trace Units for each type of debug target. 

Table 2: Trace Information by Trace Unit Type 
Traced Information Trace Unit Type 

Process ID Ownership Trace Unit (OTU) 

Instruction pointer (IP) Program Trace Unit (PTU) 

Data Data Trace Unit (DTU) 

Status Debug Status and Control Trace Unit (DCUU) 

Performance data Ownership Trace Unit (OTU) 

Watchpoint Watchpoint Trace Unit (WTU) 
 
The Multi-Core Cross Connect (MCX) block provides the functionality for the 
generation of cross-target triggers. This kind of trigger is generated from 
several conditions in different Observation Blocks. The MCX also contains a 
component for timestamp generation and a Watchpoint Trace Unit (WTU). 
The architecture of the Observation Blocks and the MCX is specific to the 
target system.  

The Debug Memory Controller (DMC) is a generic block that is responsible 
for writing the trace messages to the EMEM in the correct order with respect 
to the point in time of their creation. 

Features 
Some of the key features of MCDS are: 

• Non-intrusive debugging 

• Cycle-accurate correlation and view of traced debug events with 
internal debug target cores (Time Correlation) 

• Complex trigger system including cross-target triggers and state 
machines 

• Core runs at full speed 

• Access to internal buses 

• Code profiling through performance counters 

• Implementation split is optimized for easy adaptation to different cores 

• Covers gap between raw trace hooks and abstract messages 

• Compression of trace messages to save memory 

• Can be placed outside of production die 

• Independent of physical interface between chip and debug host 
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Some of these features are described in more detail in the following sections. 

Time Correlation 
The MCDS is able to trace multiple cores in parallel and in real-time while 
they are running at full operating speed. Timestamps are used to sort the 
trace messages in the trace memory (EMEM), so trace reconstruction with a 
scalable granularity down to the emulation clock cycle level is possible. 
Trace messages from different debug targets have an exact time correlation. 

Complex Triggers 
Highly configurable, scalable, complex trigger generation is used for trace 
qualification and for run control of the processor debug targets. Triggers can 
be generated internally in the MCDS block. As Figure 10 shows, triggers 
from the debugged cores can be fed into MCDS where they can be 
combined with internal or external triggers from other cores (cross-target). A 
configurable break and suspend switch (outside of MCDS) allows control of 
multiple processors as a group by user-defined combinations of triggers. 

 
Figure 10: MCDS Trigger Control Cross-Connect for Two-Target Example 
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Figure 11 shows the basic principle of the trace qualification and what can be 
programmed by the debug tool. The AND/OR matrix scheme applies to all 
trace qualification blocks contained in the OBs and in the MCX. The trigger 
input values can be evaluated directly or negated. Also, edge or level 
sensitivity can be selected. Triggers are generated in multiple different 
sources: 

• External core triggers directly driven by the debug targets 

• Triggers generated in Trace Units 

• Programmable (bound, range, equality) 

• Example: Instruction pointer is in range [0x0000..0x00f0] 

• Cross triggers 

• Trigger input is through the MCX (from another OB) 

• Count triggers  

• Programmable (limit) 

• Only available in MCX 

• Example: (trigger_k && trigger_l) occurred n times 

 
Figure 11: Trace Qualification Programming 

The trace qualification logic allows for feeding actions back to the trigger 
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Due to the structure of the AND/OR matrix implementation, the required 
amount of silicon area would be high if all possible trigger combinations for 
action generation were programmable. To reduce the required gate count, a 
well thought out set of possible combinations is elaborated for a specific 
target system before MCDS is implemented. 

In addition to the standard counters, so-called performance counters can be 
configured to count special performance signals that are driven by a 
dedicated debug target. Depending on the debugged core, such 
performance information can be used to measure characteristics such as: 

• Cache hits/misses 

• Number of executed instructions 

• Number of stall cycles 

• Number of interrupts acknowledged 

• Number of bus transactions done 

When a certain counter limit is reached, a message can be generated that 
contains the corresponding performance value. This information relates to a 
programmable temporal resolution. This methodology allows accurate code 
profiling and optimization. 

Demands on the Debug Tool 
The complex trace qualification features of MCDS make high demands on 
the debug tool. For example, approximately 500 32-bit MCDS registers are 
programmable in Infineon’s TriCore based TC1766/96ED (4 debug targets: 
2x CPU, 2x bus; 2 of these targets are 64-bit). The effort for a software 
developer to program the configuration registers directly would be much too 
high. Therefore, new concepts for utilizing the full power of the MCDS debug 
logic are indispensable. Appropriate concepts have already been introduced 
and are being used by software tools [1].  

IP-BASED MCDS 

Overview 
Infineon partners with IPextreme to make MCDS technology available to the 
industry as IP in order to create an attractive market for associated tooling, 
which benefits tool vendors (market size) and users (tool cost and quality). 
The biggest challenge in offering MCDS is the fact that it must fit all different 
kinds of SoCs, comprising multiple cores from different vendors. So the 
question is: what is the best approach to offer an appropriate MCDS 
architecture that fulfills this requirement?  
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To answer that question, two possible approaches for adding a debug 
solution like MCDS to a given target system shall be investigated.  

The first approach is to develop debug logic that is completely customized for 
the given target system. All components are designed for specific target core 
requirements and features. Of course, this solution offers exactly the debug 
capabilities that have been defined as requirements. No logic overhead is 
implemented, which leads to optimal silicon area and clock speed values. On 
the other hand, the design and verification effort is high. Even small changes 
for derivative SoCs of the same product family can require costly updating of 
the debug logic. But what impacts development cost and effort even more is 
the required debug tool support for this proprietary solution. As the market for 
such a debug solution is relatively small, the tool cost is accordingly high. 

The other approach is to add a generic debug architecture like a standard IP 
block to the SoC. The design and verification effort is comparatively low, 
which is a typical feature of re-used IP blocks. As the debug solution 
comprises a standard architecture, it can be expected that a certain market 
size is covered. The prospect for business opportunities raises the interest of 
tool development companies, which leads to competition. As a consequence 
the required debug tools feature high quality and low price. Opposed to these 
advantages, the generic debug architecture has always a clearly defined and 
limited set of debug features. Usually this set is either too narrow or too 
powerful compared to the debug features required for a certain target 
system. In the first case, the architecture is out of question because it does 
not fulfill the basic debug requirements. In the second case, it has to be 
accepted that the superfluous debug features mean logic overhead, which 
may lead to higher gate count and lower clock frequency. 

Comparing these approaches and trying to create a solution that 
incorporates the advantages of both while at the same time narrowing down 
the drawbacks to a reasonable level led to development of the MCDS IP-
based architecture. The term “IP-based” indicates that the solution is not a 
standard IP core that can be configured simply by adjusting some top-level 
hardware parameters. In fact, the IP-based solution is customized to the 
target system by (manually) creating the HDL descriptions for the upper 
levels. At subblock level, re-used, verified IP blocks are instantiated. The 
hardware parameters of these IP components are configured according to 
the target system’s specific requirements. 
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Architecture 
Figure 12 shows the architecture of the MCDS kernel. MCDS is programmed 
through an AMBA AHB interface [2]. This bus standard was chosen because 
it is widely used in the industry and it is an open standard. AMBA APB 
cannot be used because it does not support the required wait-state 
mechanism for bus transfers. The Bus i/f AHB block translates the AHB 
accesses for the Internal Bus Controller (IBC), which controls the internal 
SFR (Special Function Register) bus. This custom bus is required because 
the large number of SFRs makes specific demands on the bus architecture 
in order to achieve the required timing. Each OB and the MCX contain 
programmable register banks. The IBC decodes addresses to select the 
appropriate register bank. 
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Figure 12: MCDS Kernel 
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The IBC, the DMC, and the Bus i/f AHB are IP blocks that are configured 
through their hardware parameters. The OBs and the MCX are containers for 
target system specific sets of sub-level IP blocks that have to be configured 
and connected. Figure 13 shows the scheme of composing an Observation 
Block. Depending on the trace requirements (see Table 1 and Table 2), a 
certain set of Trace Unit IP blocks is instantiated. Each Trace Unit converts 
the information that is forwarded by the Adaptation Logic into a specified 
trace message format. The Trace Qualification Unit (TQU) is programmed by 
the debug tool and embodies a filter mechanism that controls which 
messages are passed on to the Message Sequencer Unit (MSU). Here the 
messages from the different Trace Units are sorted regarding their time tags, 
then passed on to the DMC. 

MSU

TQU

WTU PTU DTU OTU DCU

OB

OB is composed of 
configurable IP blocks  

Figure 13: Observation Block Composition 

The architecture of the MCX is similar to the OB architecture. The MCX 
usually contains only one Trace Unit of type Watchpoint Trace Unit. A Time 
Stamp Unit (TSU) delivers time information to all other parts of MCDS for 
internal use and for generated messages. The TQU in the MCX uses event 
counters to generate count triggers. In addition, it contains the performance 
counters used to generate performance information for a debug target. If the 
SoC contains a break switch, break signals (break_in, break_out) from and 
to this break switch are connected to the TQU in the MCX. 
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Adaptation to the Target System 
As mentioned before, some “manual” implementation work is required to 
adapt the MCDS IP-based solution to a specific target system. First of all, the 
MCDS kernel has to be created. Sub-levels IP blocks need to be configured 
according to the target system requirements. In particular, the configuration 
of the TQUs in the OBs and the MCX requires detailed knowledge about the 
SoC and the desired debug features. The setup of the AND/OR matrices as 
depicted in Figure 11 is realized in the TQUs. To avoid logic overhead, only 
well thought out possible combinations of triggers should be realized. If the 
SoC to be debugged contains dedicated run control logic for the system 
(such as a break switch), appropriate signals (break_in, break_out in Figure 
12) can be connected to/from MCDS. The MCDS output signal used to 
control such external on-chip debug logic is generated in the TQU of the 
MCX, just like all the other actions (see Figure 11). The incoming break 
signal is handled by the TQU in MCX like the other incoming triggers from 
the OBs. 

On OB and MCX level, the configured IP blocks are then instantiated and 
connected. On the kernel level, again only hardware parameter configuration 
of IP blocks (IBC, DMC – see Figure 12) and interconnection of the 
instantiated blocks is required. 

For the complete MCDS subsystem, additional components have to be 
created. The specific interface of each debugged core must be adapted to 
the interface standard supported by MCDS. The corresponding logic is 
contained in the Adaptation Logic blocks (see Figure 8). As their architecture 
is very target specific, these blocks are custom designs. If the clock domains 
of the debugged core and MCDS are not synchronous, the Adaptation Logic 
is responsible for synchronizing the observed information from the target 
clock domain into the MCDS clock domain. Depending on the clock ratios, 
information buffering may be required. The emulation memory block (EMEM) 
is also a custom design. In some SoCs, available system memory could be 
shared and used as trace memory. In other systems, dedicated RAM cells 
are used. In any case, appropriate control logic has to be implemented to 
avoid memory access conflicts between MCDS and the debug tool. 
Furthermore, custom MCDS and EMEM access logic (for example, JTAG 
client and AHB bus master) is required. For the popular JTAG option, 
reusable IP is available to implement the required hardware. 
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Impact on the Debug Tool 
As previously mentioned, new concepts in debug tool development are 
required to leverage the full power of MCDS. The IP-based solution with its 
customized architecture places even higher demands on the debug software. 
The programming of the trace qualification is SoC (device) specific; 
therefore, tool providers need to apply intelligent methods to ensure 
reusability of their software across different SoCs. Easy adaptation of the 
existing software for a new target system is a key requirement for reasonable 
development costs and success on the market. A modular and scalable 
software architecture is necessary to support the hardware configuration 
space of the MCDS architecture.  

In particular, the trace qualification capabilities of each specific MCDS 
implementation must be realized in the software. Typical SoC-specific trace 
qualification features include: 

• Number of triggers 

• Meaning of trigger 

• Setup of the AND/OR matrices 

• Number of columns/rows 

• Position of triggers 

• Possible combinations   

In the ideal case, the debug tool software has a generic architecture that can 
be adapted to a specific MCDS implementation by using a configuration file 
that contains the required specific hardware information. 

CONCLUSION 
Traditional run control debugging (start, stop, step, breakpoints) is not 
adequate for complex parallel real-time software running on a multi-core 
SoC. Only with non-intrusive trace support is it possible to observe and 
analyze such a system within its target environment. The challenge is the 
required trace bandwidth for cores and on-chip buses, which already has an 
order of magnitude of about 100 Gbit/s and it is still growing at the same 
pace as silicon integration technology (from a few cores to many cores).  

On-chip trace buffering is the only long term sustainable solution, which was 
the reason that Infineon decided on this approach several years ago for the 
high-end automotive powertrain microcontroller line. The MCDS IP features 
trace, triggers, and performance monitoring. Devices with MCDS and 
associated tooling are available in the market and are being used with very 
positive feedback from automotive customers. 
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Infineon decided to partner with IPextreme to make the MCDS technology 
available to the industry to create an attractive market for associated tooling, 
which benefits tool vendors (market size) and users (tool cost and quality). 
The MCDS IP-based architecture allows tailoring an optimum debug solution 
for a specific multi-core SoC with minimum effort and minimum risk. 
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