
A White Paper
Presented by IPextreme

Today’s multi-core, multi-bus SoCs lack the necessary
externally visible observation points needed for real-time
system debug and performance optimization.
Developers need access to a vast amount of data from
deep within the chip while the chip is operating in its
system environment. And, for effective debugging, that
trace data needs to be filtered down to a manageable
quantity of relevant data.

In this paper, we show how Infineon’s Multi-Core Debug
Solution makes real-time, in-system debug and
performance analysis practical by tracing the relevant
information at the relevant time(s).

Multi-Core Debug Solution IP

HIGHLIGHTS
 Limitations of traditional debug

methodologies

 Approaches to on-chip trace

 MCDS—a proven solution

 Debug tools adapt to advanced
on-chip trace technology

Dr. Albrecht Mayer, Infineon Technologies AG
Harry Siebert, Infineon Technologies AG
Christian Lipsky, IPextreme, Inc.

SoC Software Debugging and Performance Optimization >> May 2007

 WHITE PAPER Multi-Core Debug Solution IP Page 2

ABSTRACT
The speed and density of today’s multi-core SoCs have outgrown traditional
debugging methodologies. To debug a system in its target environment,
where problems often only occur, a debugger needs access to an enormous
amount of trace data from various processors, buses, and signals within the
SoC. Getting this data off-chip to the debugger in real time requires on the
order of 100 Gbits/sec of bandwidth at the chip I/O, which is not practical
using either dedicated debug pins or shared debug/functional pins. The
problem is further compounded by the need to analyze all of that data.

Infineon has successfully developed and deployed a technology known as
the Multi-Core Debug Solution (MCDS) to address that problem. Using
advanced on-chip trace techniques that include on-chip trigger generation,
trace data compression, and trace storage, MCDS provides only the relevant
trace data to the debug tool. Without adding pins to the chip, MCDS enables
real-time, in-system debug and performance optimization.

TABLE OF CONTENTS
WHY COMPLEX SOC DEBUGGING NEEDS A SOLUTION........... 3

Introduction.. 3
Zero Defect Culture ... 4
SoC Debug Challenge... 5
From Pin-Based Trace to On-Chip Trace.................................... 6

ON-CHIP TRACE ... 7
Debugging ... 7
Profiling and Performance Optimization...................................... 8
Devices with On-Chip Trace.. 8
On-Chip Trace Architecture... 9

MULTI-CORE DEBUG SOLUTION (MCDS) 11
Architecture ... 11
Features .. 14
Time Correlation.. 15
Complex Triggers .. 15
Demands on the Debug Tool .. 17

IP-BASED MCDS ... 17
Overview ... 17
Architecture ... 19
Adaptation to the Target System... 21
Impact on the Debug Tool ... 22

CONCLUSION.. 22
REFERENCES... 23

 WHITE PAPER Multi-Core Debug Solution IP Page 3

WHY COMPLEX SOC DEBUGGING NEEDS A SOLUTION

Introduction
The migration from system-on-printed circuit board (PCB) to system-on-chip
(SoC) has moved more and more parts of the system onto the SoC. An
unintended side effect of this higher level of integration is the loss of
observation possibilities (Figure 1).

RAM RAM DSP

Bus
Bridge

RAM
MCU

ADC I/F
Flash

Interface
Peripherals

Bus 1

Bus 2

System
on PCB

Logic Analyzer In Circuit Emulator (ICE)

Scope

Logic
Analyzer

In Circuit
Emulator (ICE)

Logic
AnalyzerScope

RAM RAM DSP

Bus
Bridge

RAM
MCU

ADC I/F
Flash

Interface
Peripherals

Bus 1

Bus 2

System
on Chip

Logic Analyzer In Circuit Emulator (ICE)

Scope

Logic
Analyzer

In Circuit
Emulator (ICE)

Logic
AnalyzerScope

Figure 1: Tool Probing Points for System on PCB and SoC

 WHITE PAPER Multi-Core Debug Solution IP Page 4

When the program memory or a cache is on-chip, it is no longer possible to
observe the program flow by just tracing the fetched code at the external bus
interface. On the data access side, the trend is similar.

The latest generation of SoCs goes one step further with the introduction of
multi-core architectures. Also, due to active peripherals like DMA or serial
interfaces with bus master capabilities, such systems are increasingly more
difficult to design and to debug. This is particularly true for real-time systems
such as for automotive, where traditional debugging with breakpoints and
single-stepping is definitely not adequate.

For example, even if the SoC in Figure 1 contains trigger logic on bus 2 that
can stop the whole system when there is a wrong data access, this is not
always sufficient to find the root cause of the problem. The bug could be in
an interrupt service routine running on the processor core, which has already
returned when the pipelined write access is propagated over the bus bridge
from bus 1 to bus 2. In addition, the bug could be sporadic and may only
occur when the SoC is used in its hard real-time environment. The obvious
solution for such situations is to have trace support on the SoC.

Zero Defect Culture
Not only is the hardware part of a system is getting more and more complex,
it is the same for the software (Figure 2). Traditional debugging still searches
and finds a significant number of bugs when all parts of the system work
together. However, ensuring a completely bug-free design becomes nearly
impossible as the size and complexity of the system exceeds a certain limit.
The time needed to analyze a bug, where the effect is visible in a totally
different place and the link to the root cause is across several component
boundaries and hierarchy levels, can obsolete any time-to-market planning.
On the other hand, a bug that slips through testing can lead to a very
expensive recall of the product.

Figure 2: System Components on Hardware and Software Levels

 Processor
Cores Multi-Master

Buses Peripherals

Operating
System Low Level

Drivers Complex
Drivers

Higher Level
Software Own

Applications 3rd Party
Applications

Lower Level
Software

Hardware

 WHITE PAPER Multi-Core Debug Solution IP Page 5

The obvious and proven way out of this complexity trap is to build a system
the employs well-defined, hierarchically structured components, with
straightforward interfaces between them. For each single component, the
verification complexity is manageable, so a bug-free component is not a
completely unrealistic target. The debugging scope is more local, starting
hierarchically from bottom to top. A lower-level component is merged into the
next higher level of hierarchy only when it is fully tested and bug-free
(Figure 3).

Figure 3: Debugging Levels

SoC Debug Challenge
Debugging of complex systems requires parallel tracing of selected system
states. Ideally, the program flow of all cores, their data accesses, data
transfers on multi-master buses, special signals, and certain states of
peripherals would be available for analysis with cycle-accurate alignment.
The key challenge is the getting the required bandwidth for the trace data.
For a multi-scalar processor core, the Instruction Pointer (IP) and up to two
data accesses (address and data) need to be recorded in the same cycle.
Depending on the processor architecture, this amounts to 100–200 bits per
clock cycle; so, for a multi-core SoC with fast processor cores, the order of
magnitude of the required trace bandwidth is 100 Gbit/s. Even with trace
data compression—which works fine for IP trace (compression factor of 10 to
20) but is quite limited for data trace (maximum compression factor of 2)—it
is impossible to get this bandwidth off-chip in a cost-effective way.

 Processor
Cores Multi-Master

Buses Peripherals

Operating
System Low Level

Drivers Complex
Drivers

Higher Level
Software Own

Applications 3rd Party
Applications

Hardware

Higher
Level
Debug

Lower
Level
Debug

Lower Level
Software

 WHITE PAPER Multi-Core Debug Solution IP Page 6

The increased cost of getting the trace data off-chip can be limited to only a
test version of chip, but the next hurdle is the external trace capture and
storage unit. Gigabytes of trace memory are sufficient only for seconds of
trace; and the trace data still needs to be uploaded to a computer. This will
take about 20 seconds for one gigabyte over a gigabit Ethernet link, after
which the debug tool software still needs to analyze and filter the data, which
can take up to several minutes.

From Pin-Based Trace to On-Chip Trace
Figure 4 shows the general trend for required trace bandwidth for leading
edge SoCs using the latest technology. The required trace bandwidth scales
with the number of cores and their interconnect busses, multiplied by the
operating frequency. This trend is balanced with the falling cost of gates and
memory cells, which are the building block elements of on-chip trace
solutions. However, it is not balanced with the cost of bandwidth per pin. At
the physical transport layer level, there is no benefit from newer
technologies. The silicon size is determined by mechanical constraints
(bonding) and the required driver strength for a high-frequency signal with a
given external load capacitance. Also, the packaging cost per pin is falling
much more slowly than the cost per transistor.

Time
Trend to multi-core SoCs due to Moore's law + rising clock frequencies

Lo
ga

rit
hm

ic
Sc

al
e

Cost per Gate/Memory Cell

Requ
ired

 SoC Trace
 Bandwidth

Cost of Bandwidth per Pin

Pin Based Trace On-Chip Trace

Figure 4: Trace Performance Trend

 WHITE PAPER Multi-Core Debug Solution IP Page 7

One option to gain trace pins is to overlay tracing on to existing pins.
However, this has two drawbacks:

• The requirement for such pins is that they are not needed by the
system during the debugging phase. It is usually difficult, if not
impossible, to identify such pins.

• High trace data frequencies require strong output drivers. These drivers
will cause high leakage currents and bad electromagnetic compatibility
(EMC) behavior even when they are not being used for tracing, since
they are also used for application functions during normal operation.

ON-CHIP TRACE
The following sections describe the reasons for on-chip trace, the limitations
of on-chip trace, and how those limitations can be overcome.

Debugging
When used for debugging, the trace data will eventually be analyzed by a
human being. Since nobody can step through millions of cycles of data at a
computer screen, the debug tool must offer search functions for the trace.
These search functions provide conditions, of various levels of complexity, to
search for within the recorded trace.

The idea of on-chip trace is to apply these conditions to restrict the trace
recording to this very small fraction of relevant trace data. The search
condition becomes the trigger condition to stop the trace recording. There
are even tools on the market that promote the feature that the trigger and
trace qualification graphical user interface (GUI) is the same GUI used for
trace search.

With this approach, the size of the trace memory can be kept so small that it
is acceptable to have it on-chip. It can be also shared with user RAM, which
is only used for higher-level applications, if a bottom-up system verification
and debugging approach is used as previously described. With on-chip trace
memory, the amount of trace data that needs to be uploaded is quite small,
so there is no delay and the user can work interactively.

 WHITE PAPER Multi-Core Debug Solution IP Page 8

Profiling and Performance Optimization
In addition to debugging, trace is also used for profiling and performance
optimization. Profiling is the analysis part of performance optimization—
finding the sections of code where the application spends most of the time.
These sections of code (for example, functions) can then be optimized on a
higher level, which is sufficient in most cases. However, for certain critical
algorithms, reducing the execution time of the core loops by just a few cycles
can have a significant effect. For this optimization, a cycle-accurate trace is
needed to enable analyzing the effects when this core loop is optimized on
the assembler level (for example, by reordering the instructions).

Profiling is a statistical analysis of the system behavior. It is mainly applied
for the program flow, but other aspects such as data accesses can also be
profiled. In essence, profiling should answer two questions:

1. Where is the largest lever for performance optimization?

2. How can the performance in this part be optimized?

With statistical sampling, the required data rate can be reduced to a level
that allows avoiding a high-speed trace interface. The sampling rate just
needs to be kept low enough that the bandwidth of the tool interface is
sufficient for continuously reading out the trace data. For individually
analyzing the performance-relevant functions (for example, with cycle
accurate trace), the on-chip trace memory is sufficient.

The reasons for sub-optimal performance can be such things as cache
misses, pre-fetch buffer misses, and/or bus contention, which are not directly
visible even from a cycle-accurate IP trace. In some cases, they can be
guessed; but this is a cumbersome approach. The better option is direct
recording of such events, aligned with data and IP trace.

Devices with On-Chip Trace
Based on these considerations and after intensive discussions with key
customers, Infineon decided for an on-chip trace solution several years ago.
Currently, there are two Emulation Devices (EDs) available in the market:
TC1766ED and TC1796ED, which cover a whole family of high-end
automotive powertrain microcontrollers.

Developers of automotive
applications are using
MCDS to tune powertrain
control software—from the
passenger compartment of
the car while the engine is
running.

 WHITE PAPER Multi-Core Debug Solution IP Page 9

Figure 5 shows the TC1766ED on the unchanged evaluation board of the
TC1766. The automotive-specific requirement of a large overlay RAM for
calibration drove the decision to build dedicated EDs. A typical calibration
use case is to optimize the engine-control parameter tables, residing in flash
memory, from the passenger compartment. The TC1766ED features 256 KB
of emulation RAM whose 64-KB tiles can be assigned to flash overlay or
trace buffering. The TC1766ED is created from the unchanged hard macro of
the TC1766 SoC, extended on the side with the overlay/trace RAM and the
trigger, trace qualification, and trace compression module known as MCDS
(Multi-Core Debug Solution).

Figure 5: TC1766ED Emulation Device with MCDS

On-Chip Trace Architecture
In the MCDS-based on-chip trace architecture, the complete emulator from
trace message generation down to trace storage is located within the device
package (Figure 6). At the heart of this emulator logic is Infineon’s on-chip
MCDS, which features trace, triggers, and performance monitoring. The
architecture is independent of the physical interface between the chip and
the debug host; no additional hardware is required except for the host PC.
Instead of an additional emulator box, a software layer running on the host
computer can be used to configure MCDS and to read the stored trace data.

 WHITE PAPER Multi-Core Debug Solution IP Page 10

Trace
Message

Generation

Trace
Message

Generation

Trace Qualification

Trace Storage

Trace Reconstruction

Debug Tool A Debug Tool B

Production Logic

Trace
Logic

DAS

Tool (Client)

HW

SW

MCDS

Target A Target B Execution
Control

Figure 6: Data Flow through an MCDS-Based Debug System

Infineon developed and uses such a layer, called DAS (Device Access
Server, see www.infineon.com/DAS). With this concept, any existing chip
interface can be shared to get the trace data off the chip; so no additional
pins are required. A popular solution is to use the standard JTAG pins as
debug interface. Especially for debugging or calibration measurement in the
field (for example, engine control in a car while driving), a narrow tool
interface allowing a long thin cable is much more convenient than the bulky
cables, headers, or adaptors that are required for pin-based trace
architectures.

 WHITE PAPER Multi-Core Debug Solution IP Page 11

MULTI-CORE DEBUG SOLUTION (MCDS)

Architecture
Figure 7 shows the functional blocks of MCDS in an example system for two
debug targets (Cores A and B). Depending on the target type (processor,
bus, or set of signals), the relevant traced information can be different. For
instance, the instruction pointer can obviously only be traced for a processor
target. For other target types, information such as data and status signals
can be of interest.

Figure 7: MCDS Functional Blocks in Two-Target Example

Figure 8 shows an example MCDS subsystem with the JTAG option for
access to MCDS and the emulation memory (EMEM). For a different
hardware interface (such as USB or CAN), the JTAG specific blocks in
Figure 8 (JTAG controller, JTAG client, and bus master) have to be replaced
by the corresponding interface logic.

The JTAG controller in the system as shown in Figure 8 could be shared with
other JTAG clients. Appropriate JTAG instructions are required to ensure the
correct mode of operation.

IP Reconstruction *

Message
Generation

Trigger
Extraction

Message
FIFO

Message Sorter

Data Reconstruction

Message
Generation

Trigger
Extraction

Message
FIFO

Adaptation Logic

Message Sorter

Core A Core B

MCDS

* Instruction Pointer Reconstruction
 (processor targets only)

 WHITE PAPER Multi-Core Debug Solution IP Page 12

MCDS Kernel

Adaptation
Logic 1

Target 1
signals

Adaptation
Logic 2

Target 2
signals

Adaptation
Logic n

Target n
signals

Adaptation
Logic (sync)

break_in,
break_out

EMEM
(Emulation Memory)

JTAG
Controller
(shared)

Bus
Master
JTAG
Client

System/peripheral bus: AHB

JTAG
Figure 8: MCDS Sub-System with JTAG Access

MCDS supports debug targets of different types:

• Processor

• Bus

• Set of signals

For the different debug target types, different information is available for
tracing. For example, a bus type of target usually does not provide any
instruction pointer information. Table 1 lists the different target types and the
corresponding relevant trace information.

Table 1: Trace Information from Different Target Types
Traced Information Processor Bus Set of Signals

Process ID X

Instruction pointer (IP) X

Data X X

Status X X X

Performance data X X

Watchpoint X X

 WHITE PAPER Multi-Core Debug Solution IP Page 13

Each debug target is connected to MCDS through an Adaptation Logic block.
The design of such a block is specific to the debug target. The Adaptation
Logic block connects the target’s custom interface (for example, instruction
pointer, data, address, etc.) to a generic standardized interface that is used
by MCDS. In addition, the Adaptation Logic block synchronizes the signals
from the clock domain at the target side to the MCDS clock domain. Of
course, this feature only applies if the emulation clock (the MCDS clock) and
the target clock belong to different clock domains.

The trace messages that are generated in the MCDS kernel are stored in the
EMEM. The EMEM contains memory cells (RAM) and the control logic that is
required to ensure that MCDS (write) and the debug tool (read) can both
access the trace memory without conflicts.

The architecture of MCDS depends on the number and type of debug
targets. Figure 9 shows an overview of the blocks in the MCDS kernel. Each
target is connected to a dedicated Observation Block (OB), in which trace
qualification and trace message generation take place. Several Trace Units
of different types are contained in an Observation Block. The number and
type of these Trace Units depend on the debug target to which the
Observation Block is connected.

DMC

OB 1

Target 1
signals

OB 2

Target 2
signals

OB n

Target n
signals

MCX

break_in,
break_out

To/from EMEM

= System-specific block

msg msg msg msg

To/from Adaptation Logic

Figure 9: MCDS Kernel Overview

 WHITE PAPER Multi-Core Debug Solution IP Page 14

Table 2 gives an overview of which type of Trace Unit is usually used for a
specific kind of trace information. The combination of Table 1 and Table 2
results in an appropriate set of Trace Units for each type of debug target.

Table 2: Trace Information by Trace Unit Type
Traced Information Trace Unit Type

Process ID Ownership Trace Unit (OTU)

Instruction pointer (IP) Program Trace Unit (PTU)

Data Data Trace Unit (DTU)

Status Debug Status and Control Trace Unit (DCUU)

Performance data Ownership Trace Unit (OTU)

Watchpoint Watchpoint Trace Unit (WTU)

The Multi-Core Cross Connect (MCX) block provides the functionality for the
generation of cross-target triggers. This kind of trigger is generated from
several conditions in different Observation Blocks. The MCX also contains a
component for timestamp generation and a Watchpoint Trace Unit (WTU).
The architecture of the Observation Blocks and the MCX is specific to the
target system.

The Debug Memory Controller (DMC) is a generic block that is responsible
for writing the trace messages to the EMEM in the correct order with respect
to the point in time of their creation.

Features
Some of the key features of MCDS are:

• Non-intrusive debugging

• Cycle-accurate correlation and view of traced debug events with
internal debug target cores (Time Correlation)

• Complex trigger system including cross-target triggers and state
machines

• Core runs at full speed

• Access to internal buses

• Code profiling through performance counters

• Implementation split is optimized for easy adaptation to different cores

• Covers gap between raw trace hooks and abstract messages

• Compression of trace messages to save memory

• Can be placed outside of production die

• Independent of physical interface between chip and debug host

 WHITE PAPER Multi-Core Debug Solution IP Page 15

Some of these features are described in more detail in the following sections.

Time Correlation
The MCDS is able to trace multiple cores in parallel and in real-time while
they are running at full operating speed. Timestamps are used to sort the
trace messages in the trace memory (EMEM), so trace reconstruction with a
scalable granularity down to the emulation clock cycle level is possible.
Trace messages from different debug targets have an exact time correlation.

Complex Triggers
Highly configurable, scalable, complex trigger generation is used for trace
qualification and for run control of the processor debug targets. Triggers can
be generated internally in the MCDS block. As Figure 10 shows, triggers
from the debugged cores can be fed into MCDS where they can be
combined with internal or external triggers from other cores (cross-target). A
configurable break and suspend switch (outside of MCDS) allows control of
multiple processors as a group by user-defined combinations of triggers.

Figure 10: MCDS Trigger Control Cross-Connect for Two-Target Example

AND

OR

Adaptation Logic

AND

OR

Counter

AND

OR

Adaptation Logic

Core A Core B

Trigger

Enable

Trigger

Enable

Complex trigger
(trace qualifier or break)

 WHITE PAPER Multi-Core Debug Solution IP Page 16

Figure 11 shows the basic principle of the trace qualification and what can be
programmed by the debug tool. The AND/OR matrix scheme applies to all
trace qualification blocks contained in the OBs and in the MCX. The trigger
input values can be evaluated directly or negated. Also, edge or level
sensitivity can be selected. Triggers are generated in multiple different
sources:

• External core triggers directly driven by the debug targets

• Triggers generated in Trace Units

• Programmable (bound, range, equality)

• Example: Instruction pointer is in range [0x0000..0x00f0]

• Cross triggers

• Trigger input is through the MCX (from another OB)

• Count triggers

• Programmable (limit)

• Only available in MCX

• Example: (trigger_k && trigger_l) occurred n times

Figure 11: Trace Qualification Programming

The trace qualification logic allows for feeding actions back to the trigger
inputs. So, with appropriate programming (for example, cascading counters),
it is possible to generate very complex state machine based actions.

trigger_1

trigger_2

trigger_3

trigger_n

AND

AND AND AND

AND AND

AND

AND

AND

OR

OR

OR OR

OR OR

OR

OR

action_1

action_2

action_3

action_m

AND

Core triggers

Triggers from TUs
Cross triggers
Count triggers

Programmable:
>, >=, <, <=, =

Programmable

 WHITE PAPER Multi-Core Debug Solution IP Page 17

Due to the structure of the AND/OR matrix implementation, the required
amount of silicon area would be high if all possible trigger combinations for
action generation were programmable. To reduce the required gate count, a
well thought out set of possible combinations is elaborated for a specific
target system before MCDS is implemented.

In addition to the standard counters, so-called performance counters can be
configured to count special performance signals that are driven by a
dedicated debug target. Depending on the debugged core, such
performance information can be used to measure characteristics such as:

• Cache hits/misses

• Number of executed instructions

• Number of stall cycles

• Number of interrupts acknowledged

• Number of bus transactions done

When a certain counter limit is reached, a message can be generated that
contains the corresponding performance value. This information relates to a
programmable temporal resolution. This methodology allows accurate code
profiling and optimization.

Demands on the Debug Tool
The complex trace qualification features of MCDS make high demands on
the debug tool. For example, approximately 500 32-bit MCDS registers are
programmable in Infineon’s TriCore based TC1766/96ED (4 debug targets:
2x CPU, 2x bus; 2 of these targets are 64-bit). The effort for a software
developer to program the configuration registers directly would be much too
high. Therefore, new concepts for utilizing the full power of the MCDS debug
logic are indispensable. Appropriate concepts have already been introduced
and are being used by software tools [1].

IP-BASED MCDS

Overview
Infineon partners with IPextreme to make MCDS technology available to the
industry as IP in order to create an attractive market for associated tooling,
which benefits tool vendors (market size) and users (tool cost and quality).
The biggest challenge in offering MCDS is the fact that it must fit all different
kinds of SoCs, comprising multiple cores from different vendors. So the
question is: what is the best approach to offer an appropriate MCDS
architecture that fulfills this requirement?

 WHITE PAPER Multi-Core Debug Solution IP Page 18

To answer that question, two possible approaches for adding a debug
solution like MCDS to a given target system shall be investigated.

The first approach is to develop debug logic that is completely customized for
the given target system. All components are designed for specific target core
requirements and features. Of course, this solution offers exactly the debug
capabilities that have been defined as requirements. No logic overhead is
implemented, which leads to optimal silicon area and clock speed values. On
the other hand, the design and verification effort is high. Even small changes
for derivative SoCs of the same product family can require costly updating of
the debug logic. But what impacts development cost and effort even more is
the required debug tool support for this proprietary solution. As the market for
such a debug solution is relatively small, the tool cost is accordingly high.

The other approach is to add a generic debug architecture like a standard IP
block to the SoC. The design and verification effort is comparatively low,
which is a typical feature of re-used IP blocks. As the debug solution
comprises a standard architecture, it can be expected that a certain market
size is covered. The prospect for business opportunities raises the interest of
tool development companies, which leads to competition. As a consequence
the required debug tools feature high quality and low price. Opposed to these
advantages, the generic debug architecture has always a clearly defined and
limited set of debug features. Usually this set is either too narrow or too
powerful compared to the debug features required for a certain target
system. In the first case, the architecture is out of question because it does
not fulfill the basic debug requirements. In the second case, it has to be
accepted that the superfluous debug features mean logic overhead, which
may lead to higher gate count and lower clock frequency.

Comparing these approaches and trying to create a solution that
incorporates the advantages of both while at the same time narrowing down
the drawbacks to a reasonable level led to development of the MCDS IP-
based architecture. The term “IP-based” indicates that the solution is not a
standard IP core that can be configured simply by adjusting some top-level
hardware parameters. In fact, the IP-based solution is customized to the
target system by (manually) creating the HDL descriptions for the upper
levels. At subblock level, re-used, verified IP blocks are instantiated. The
hardware parameters of these IP components are configured according to
the target system’s specific requirements.

 WHITE PAPER Multi-Core Debug Solution IP Page 19

Architecture
Figure 12 shows the architecture of the MCDS kernel. MCDS is programmed
through an AMBA AHB interface [2]. This bus standard was chosen because
it is widely used in the industry and it is an open standard. AMBA APB
cannot be used because it does not support the required wait-state
mechanism for bus transfers. The Bus i/f AHB block translates the AHB
accesses for the Internal Bus Controller (IBC), which controls the internal
SFR (Special Function Register) bus. This custom bus is required because
the large number of SFRs makes specific demands on the bus architecture
in order to achieve the required timing. Each OB and the MCX contain
programmable register banks. The IBC decodes addresses to select the
appropriate register bank.

DMC

OB 1 OB 2 OB n

MCX

Generic memory write i/f

msg msg msg msg

IBC

Bus i/f
AHB

Target 1
signals

Target 2
signals

Target n
signals

break_in,
break_out

To/from Adaptation Logic

MCDS_KERNEL

MCDS_AHB_KERNEL

System/periphal bus: AHB

SFR
Bus

= System-specific, consists of IP blocks

= IP block

OB: Observation Block
MCX: Multi-Core Crossconnect
IBC: Internal Bus Controller
DMC: Debug Memory Controller

clk, clk_en,
reset

Figure 12: MCDS Kernel

 WHITE PAPER Multi-Core Debug Solution IP Page 20

The IBC, the DMC, and the Bus i/f AHB are IP blocks that are configured
through their hardware parameters. The OBs and the MCX are containers for
target system specific sets of sub-level IP blocks that have to be configured
and connected. Figure 13 shows the scheme of composing an Observation
Block. Depending on the trace requirements (see Table 1 and Table 2), a
certain set of Trace Unit IP blocks is instantiated. Each Trace Unit converts
the information that is forwarded by the Adaptation Logic into a specified
trace message format. The Trace Qualification Unit (TQU) is programmed by
the debug tool and embodies a filter mechanism that controls which
messages are passed on to the Message Sequencer Unit (MSU). Here the
messages from the different Trace Units are sorted regarding their time tags,
then passed on to the DMC.

MSU

TQU

WTU PTU DTU OTU DCU

OB

OB is composed of
configurable IP blocks

Figure 13: Observation Block Composition

The architecture of the MCX is similar to the OB architecture. The MCX
usually contains only one Trace Unit of type Watchpoint Trace Unit. A Time
Stamp Unit (TSU) delivers time information to all other parts of MCDS for
internal use and for generated messages. The TQU in the MCX uses event
counters to generate count triggers. In addition, it contains the performance
counters used to generate performance information for a debug target. If the
SoC contains a break switch, break signals (break_in, break_out) from and
to this break switch are connected to the TQU in the MCX.

 WHITE PAPER Multi-Core Debug Solution IP Page 21

Adaptation to the Target System
As mentioned before, some “manual” implementation work is required to
adapt the MCDS IP-based solution to a specific target system. First of all, the
MCDS kernel has to be created. Sub-levels IP blocks need to be configured
according to the target system requirements. In particular, the configuration
of the TQUs in the OBs and the MCX requires detailed knowledge about the
SoC and the desired debug features. The setup of the AND/OR matrices as
depicted in Figure 11 is realized in the TQUs. To avoid logic overhead, only
well thought out possible combinations of triggers should be realized. If the
SoC to be debugged contains dedicated run control logic for the system
(such as a break switch), appropriate signals (break_in, break_out in Figure
12) can be connected to/from MCDS. The MCDS output signal used to
control such external on-chip debug logic is generated in the TQU of the
MCX, just like all the other actions (see Figure 11). The incoming break
signal is handled by the TQU in MCX like the other incoming triggers from
the OBs.

On OB and MCX level, the configured IP blocks are then instantiated and
connected. On the kernel level, again only hardware parameter configuration
of IP blocks (IBC, DMC – see Figure 12) and interconnection of the
instantiated blocks is required.

For the complete MCDS subsystem, additional components have to be
created. The specific interface of each debugged core must be adapted to
the interface standard supported by MCDS. The corresponding logic is
contained in the Adaptation Logic blocks (see Figure 8). As their architecture
is very target specific, these blocks are custom designs. If the clock domains
of the debugged core and MCDS are not synchronous, the Adaptation Logic
is responsible for synchronizing the observed information from the target
clock domain into the MCDS clock domain. Depending on the clock ratios,
information buffering may be required. The emulation memory block (EMEM)
is also a custom design. In some SoCs, available system memory could be
shared and used as trace memory. In other systems, dedicated RAM cells
are used. In any case, appropriate control logic has to be implemented to
avoid memory access conflicts between MCDS and the debug tool.
Furthermore, custom MCDS and EMEM access logic (for example, JTAG
client and AHB bus master) is required. For the popular JTAG option,
reusable IP is available to implement the required hardware.

 WHITE PAPER Multi-Core Debug Solution IP Page 22

Impact on the Debug Tool
As previously mentioned, new concepts in debug tool development are
required to leverage the full power of MCDS. The IP-based solution with its
customized architecture places even higher demands on the debug software.
The programming of the trace qualification is SoC (device) specific;
therefore, tool providers need to apply intelligent methods to ensure
reusability of their software across different SoCs. Easy adaptation of the
existing software for a new target system is a key requirement for reasonable
development costs and success on the market. A modular and scalable
software architecture is necessary to support the hardware configuration
space of the MCDS architecture.

In particular, the trace qualification capabilities of each specific MCDS
implementation must be realized in the software. Typical SoC-specific trace
qualification features include:

• Number of triggers

• Meaning of trigger

• Setup of the AND/OR matrices

• Number of columns/rows

• Position of triggers

• Possible combinations

In the ideal case, the debug tool software has a generic architecture that can
be adapted to a specific MCDS implementation by using a configuration file
that contains the required specific hardware information.

CONCLUSION
Traditional run control debugging (start, stop, step, breakpoints) is not
adequate for complex parallel real-time software running on a multi-core
SoC. Only with non-intrusive trace support is it possible to observe and
analyze such a system within its target environment. The challenge is the
required trace bandwidth for cores and on-chip buses, which already has an
order of magnitude of about 100 Gbit/s and it is still growing at the same
pace as silicon integration technology (from a few cores to many cores).

On-chip trace buffering is the only long term sustainable solution, which was
the reason that Infineon decided on this approach several years ago for the
high-end automotive powertrain microcontroller line. The MCDS IP features
trace, triggers, and performance monitoring. Devices with MCDS and
associated tooling are available in the market and are being used with very
positive feedback from automotive customers.

 WHITE PAPER Multi-Core Debug Solution IP Page 23

Infineon decided to partner with IPextreme to make the MCDS technology
available to the industry to create an attractive market for associated tooling,
which benefits tool vendors (market size) and users (tool cost and quality).
The MCDS IP-based architecture allows tailoring an optimum debug solution
for a specific multi-core SoC with minimum effort and minimum risk.

REFERENCES
1. Irrgang K., Weisse S., Groeger T., “A New Concept for Efficient Use of
Complex On-Chip Debug Solutions in SoC Based Systems”

2. AMBA Specification, Rev 2.0, ARM, www.arm.com

 www.ip-extreme.com

IPextreme, Inc.
307 Orchard City Drive
M/S 202
Campbell, CA 95008
800-289-6412 (toll-free)
408-608-0421 (fax)

THIS WHITE PAPER IS FOR INFORMATIONAL PURPOSES ONLY. THE CONTENT IS PROVIDED AS IS, WITHOUT EXPRESS
OR IMPLIED WARRANTIES OF ANY KIND. INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE.

© Copyright 2007, IPextreme. All rights reserved. IPextreme and the IPextreme logo are trademarks of IPextreme, Inc. All other
trademarks are the property of their respective owners.

